
00 >
o DH

.—1
1 8

<tf
vD 3
f£ l-H

a U-.
H-

M
Q H
CO CO
UJ U4

ESD-TDR-64-108 SR-99

FORSIM IV

FORTRAN IV SIMULATION LANGUAGE USERfS GUIDE

TECHNICAL DOCUMENTARY REPORT NO. ESD-TDR-64-108

EST\ PRnnrgcrn

D DDC TAB D PROJ OFFICER

D ACCESSION MASTER FILE

D

MAY 1964

E. Famolari

, BUILDING 1211

DAT5_

ESTI CONTROL NP /f £ ~ ¥d ~?P6

COPY NR. OF

N DIVISION

COPIES

CY NR_ 4-»-/-
Prepared for

-CYS,
"416 L/M-CONTROL-WARNING SUPPORT SYSTEM

ELECTRONIC SYSTEMS DIVISION

AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE

L. G. Hanscom Field, Bedford, Massachusetts

Project 416. 2
Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract AF 19(628)-2390

fRööbötlTi

Copies available at Office of Technical Services,
Department of Commerce.

Qualified requesters may obtain copies from DDC.
Orders will be expedited if placed through the librarian
or other person designated to request documents
from DDC.

When US Government drawings, specifications, or
other data are used for any purpose other than a
definitely related government procurement operation,
the government thereby incurs no responsibility
nor any obligation whatsoever; and the fact that the
government may have formulated, furnished, or in
any way supplied the said drawings, specifications,
or other data is not to be regarded by implication
or otherwise, as in any manner licensing the holder
or any other person or corporation, or conveying
any rights or permission to manufacture, use, or sell
any patented invention that may in any way be related
thereto.

Do not return this copy. Retain or destroy.

ESD-TDR-64-108 SR-99

FORSIM IV

FORTRAN IV SIMULATION LANGUAGE USER'S GUIDE

TECHNICAL DOCUMENTARY REPORT NO. ESD-TDR-64-108

MAY 1964

E. Famolari

Prepared for

416 L/M-CONTROL-WARNING SUPPORT SYSTEM

ELECTRONIC SYSTEMS DIVISION

AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE

L. G. Hanscom Field, Bedford, Massachusetts

Project 416. 2
Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract AF 19(628)-2390

FOREWORD

FORSIM IV was developed by the author as an aid to simulating certain

aspects of the Back-Up Interceptor Control (BUIC) system. While the motive

force was a specific application, FORSIM IV is the outgrowth of a study of

various simulation languages and techniques. As a result, the author believes

that it has potentially wider applications as a general simulation pseudo-

language. It is the first language of this type developed for the IBM 7030

computer. (By assembly of FORSIM IV using existing FAP coded routines in

place of STRAP coded routines, it also could be used on any FORTRAN IV

compiling 7090 computer.)

Insofar as can be determined, it is also the first instance of a working,

subroutine-structured simulation language. The simple but effective technique

of subroutine structure primarily results from the flexibility of the IBM

FORTRAN IV language. The following are the more important of the many

benefits which are derived from employing a routine structure: a common or

"machine-independent" structure, providing ease of conversion and expansion;

elimination of a costly precompiler and a new operating system; and simplifica-

tion of system structure and maintenance. Furthermore, FORSIM IV can be

integrated into existing FORTRAN oriented program packages (Loaders, etc.).

The simulation facilities of MITRE include the FAST precompiler language

and the STAPP System which can be combined with FORSIM to ease the work of

preparing large simulations by subdividing it among several programmers.

The author is indebted to W. L. Cleveland for providing the debug and

random number routines.

FORSIM IV— FORTRAN IV SIMULATION LANGUAGE USER'S GUIDE

ABSTRACT

FORSIM IV was developed as an aid to simulating certain aspects of the
Back-Up Interceptor Control (BUIC) system, and is the first general simulation
pseudo-language developed for the IBM 7030 computer. It represents an innova-
tion in simulation language technique since it is constructed not as a language,
but as a subroutine package. It can be adapted to any computer capable of com-
piling programs written in FORTRAN IV language. Constructed in FORTRAN
IV, FORSIM IV is conceptually related to Control and Simulation Language (CSL);
however, it provides commands and services not available in CSL, while its
subroutine structure provides for the easy expansion of the command set, as well
as virtual machine independence. A model FORSIM IV program is included
in the document.

REVIEW AND APPROVAL

Publication of this technical documentary report does not constitute Air Force
approval of the report's findings or conclusions. It is published only for the
exchange and stimulation of ideas.

\

F. R. EDGIN
Chief, Engineering Division
416L/M System Program Office

iii

CONTENTS

I. INTRODUCTION

II. FORSIM IV

Building Blocks

Dynamics

Program Organization

Services

Other Functions

1

3

3

6

8

8

9

III. COMMAND SET 11

Set-Entity Routines 11

Timing Routines 18

Histogram Routines 22

Statistical Routines 24

STRAP/FAP Coded Routines 27

IV. SOME TECHNIQUES 33

Gordon Type Facilities and Interrupts 33

Determining Passage Times Through a Set 35

Classes of Sets 36

V. SYSTEM OPERATION 37

Maintenance 37

Program Initialization Checklist 38

VI. MODEL PROGRAM 41

Program Description 41

APPENDIX I Forsim IV Model Program 1-49

APPENDIX II Simulations - Large and Small 11-53

APPENDIX III Summary of Command Routines 111-55

SECTION I

INTRODUCTION

FORSIM IV is a general purpose simulation package related to FORTRAN

IV. It represents an innovation in simulation language technique, since it is

constructed not as a language (i. e. , a precompiler) but as a subroutine package.

Presently it is available for use on the IBM 7030 (STRETCH) computer. With a

small amount of effort, it can be adapted to any computer capable of compiling

programs written in FORTRAN IV language. This is a result of the structure

of FORSIM IV. It is a package, that is, a collection of subroutines; all of the

subroutines, with the exception of the debug feature and the random number

generators, are written in FORTRAN IV.

To the user, the difference between a simulation language and FORSIM IV

is that in using a language he must write, "Wonderful Statement, " whereas, in

using FORSIM IV, he must write, "Call Wonderful Subroutine." Furthermore,

the user of FORSIM IV must write a FORTRAN IV program, calling subroutines

as he needs them. This should not be viewed as a disadvantage, since any really

flexible simulation language, no matter how self-contained, requires the services

of a professional programmer.

Many languages consist of "Wonderful Statements" and "Ordinary State-

ments. " The "Wonderful Statements" provide the power and flexibility of the

language. The "Ordinary Statements" are generally equivalent to simple

FORTRAN statements. Such a language (e.g. , SIMSCRIPT or CSL) is usually

precompiled into FORTRAN. Thus, the "Wonderful Statement" becomes a

sequence of FORTRAN statements. Clearly, if one can transform the

"Wonderful Statements" into "Wonderful Subroutines" then one has constructed

a FORTRAN package whose level is effectively higher than FORTRAN language.

In this sense, FORSIM IV is a transformation of CSL (Control and

Simulation Language), a joint product of Laski, Esso Petroleum (U.K.), and

Buxton, IBM (U.K.). Full credit is given Dr. Laski for the conceptual frame-

work of FORSIM IV. CSL was chosen because it is flexible, powerful, and easy

to learn.

FORSIM should not be viewed simply as a transliteration of CSL. It pro-

vides commands and services not available in CSL, while its subroutine

structure provides for the easy expansion of the command set, as well as virtual

machine independence. Furthermore, since so much of a FORSIM program

must be written in FORTRAN, one retains the advantage of familiarity, while

gaining the effect of a versatile simulation language.

SECTION II

FORSIM IV

BUILDING BLOCKS

Concept

FORSIM IV is founded upon the concepts of Entity, Class, and Set. An

Entity is the basic unit of one' s simulation, e.g., a specific truck if a trucking

line is being simulated, or a specific message if a communication network is

being simulated. An Entity is something which flows through the simulated

system; it is similar to a transaction in the Gordan Simulator.

Whereas an Entity is a specific unit, a Class is the grouping of all Entities

of the same type, e.g. , the Class of All Trucks or of All Messages. Sets are

used to describe relations between Entities of the same Class. One might have

a Set of All Trucks which are loaded, and another Set of All Trucks which are

garaged for repairs. Sets are always defined relative to a specific Class of

Entities. Thus, given a Class of Trucks and a Class of Drivers, one could

ascribe to SETA all Drivers on the road and to SETB all Trucks on the road, but

Drivers could not be included in SETB nor Trucks in SETA. Sets serve, in the

Gordon Simulator sense, as Stores, Facilities, and Queues. Sets may overlap;

i. e. , they may contain some common Entities.

Suppose we have a Class of Trucks and that for each Truck (Entity), we

know the load capacity and the operating cost per mile. These bits of infor-

mation are called Attributes, or Parameters of the Entities. Attributes are

associated with each Entity of a Class. Entities may have no Attributes or many,

subject only to core storage limitations.

We may form queues of Entities. Queues may be LIFO (Last In, First

Out), FIFO (First In, First Out), Random, or Ranked. A Queue contains

Entities in some order. Thus, a Queue is a Set. The ordering depends on how

we use the Set. All Sets are ordered collections of Entities, and the ordering is

automatically preserved as Entities are inserted or removed from the Set.

Consider SETA which contains Truck 1 and Truck 2, and suppose that we

desire to insert Truck 3. If SETA is ordered Last (1, 2) First, we insert Truck

3 and obtain Last (3, 1, 2) First. To treat SETA as a FIFO Queue, we command

that the first Entity (Truck 2) be removed when we require a truck. If SETA is

a LIFO Queue, we command that the last Entity (Truck 3) be removed. Alter-

natively, we could insert Entities at the head of SETA. Thus, SETA would

become, after inserting Truck 3, Last (1, 2, 3) First. Then we could treat

SETA as a LIFO Queue by always removing the first Entity.

Random Queues are obtained by normal insertion of Entities into a Set and

removal of Entities via the command subroutine, ANY, which picks some Entity

at random from all the Entities in the Set. Also we may form a Set and, then

by using the command subroutine, RANK, reorder it according to the values of

some specific Attribute of the Entities in the Set. After RANK is employed, the

Entity with the maximum Attribute value is first in the Set, and the Entity with

the minimum Attribute value is last. One may then remove the first or last

Entity in the Set. Thus, one treats the Set as a Ranked Queue.

To perform all of the varied actions and tests associated with the relations

between Set, Entities, and Attributes, a large number of commands have been

formulated. These commands, or subroutines, are called Set-Entity Relations

and are described in detail in Section III.

Structure

FORSIM IV consists of 50 subroutines, which are somewhat more, rather

than less independent. They are held together by the concept of Entity-Set

Relations. For example, consider a Class of 100 Entities which may occupy any

of 3 Sets (SETA, SETB, SETC). Since Entities fill Sets, there must be 100 slots

to each set.

To allow for Entities to be time ordered (or otherwise ordered), we treat

each Set as a pushdown list. Thus, each Set in the core is a table of 101 slots.

The first slot contains a count of the number of slots currently in use (never less

than 1, since it counts itself). The second slot contains the most recent entry,

etc. An Entity is represented in these slots by its index, which in our example

can be from 1 to 100. Thus, one could visualize a Class of Entities as an indexed

table, with each Entity represented by a single index value, and a Set as a push-

down list containing index values or Entities.

Actually, it is not necessary to define a core table for a Class, since the

conceptual manipulation of Entities reduces, in the computer, to the actual

manipulation of index values. However, if we wish to associate Attributes

(i.e., Parameters) or time values with each Entity, then we must create

appropriately dimensioned core tables. These core tables are referenced by

index values in Sets. Thus, if we have 10 as the first index value in SETA and

if we desire to set the fifth of its 10 Attributes equal to 5 (assume ATRB

(100, 10)), then we write:

(1) CALL FIRST (I, SETA, LOG)

(2) ATRB (I, 5) = 5

I is set to 10, the first Entity in SETA, by line (1); then line (2) causes the fifth

Attribute of the Ith Entity to be set to 5.

*
N. B. If SETC can contain only 1 Entity at a time, we can specify that it have

only 1 slot and not 100.

Thus, one must properly create and dimension all Sets, Attribute Tables,

or Time Tables. Then, bearing in mind the conceptual Entity-Set relationship,

the program is written using index values as Entities. This is the common

denominator, the binding force of all the FORSIM subroutines.

DYNAMICS

Simulation is concerned with things flowing through a system and the

dynamic interactions which result. In the example of a trucking operation, con-

sider the relationship, at some specific time, of Empty Trucks, Available

Drivers, and Shipping Orders. Let us, on the basis of the exhibited relationship,

assign a Driver to a Truck and designate a Shipping Order to be transported.

At the end of a certain period of time, the Truck and Driver will again become

available and the Shipping Order is destroyed. This is what is meant by dynamic

interaction. The dynamics are supplied by the passage of time and the occurrence

of events at specific times.

In this example, we have Entities from three separate Classes. We could

envision a possible future event due to each Entity; e.g., a Driver might be

limited to an 8-hour drive, the Truck might be old and unreliable and its operating

time might be a random variable, and the Order (cargo) might be perishable.

Thus, we may wish to allow for three tentative future results of the trip, Driver

fatigue, Truck breakdown, cargo spoilage. We could write short routines or

Activities to deal with each contingency. To apply these routines, we would have

to know the time each Driver reaches his limit, the time each Truck breaks

down, etc.

Since many Drivers and Trucks are on the road at the same time, it would

not be easy to assign a single future time at which the routines would act. Hence,

we could assign many times, one to each Entity. Each routine then determines

when it should act by examining the time slots for all Entities with which it is

concerned. In other cases, it might be more convenient to associate a single

time for an Activity to occur. FORSIM IV allows scope for either method.

Future action times may be calculated and assigned either to each Entity or to

an Activity. The main timing routine examines all the time slots and advances

time to the most imminent action.

To make use of time slots, the user must define and dimension as many

tables and variables as he needs. Furthermore, all time slots must be organized

consecutively in core and must be addressable by a single variable name. Suppose

one desires 100 slots for each of the two tables ITM1 and ITM2 and one variable

JTM. One could define these and Equivalence them to a single table, IT AB. Thus,

one could have IT AB (1) = JTM, IT AB (2) = ITM1, ITAB (102) = ITM2. All time

slots must be integer valued. Within these limitations, one may exercise

considerably freedom in naming and assigning time slots.

Time slots should be set relative to Main Clock time. They are never

altered by the timing routine but merely scanned to detect the next most imminent

Action Time. The Main Clock is then advanced to the selected time, and a new

cycle is begun through the Activities List. Main Clock values are always

available to the programmer who must reserve the first two slots of Common as

integer variables. The first slot will contain the current value of Main Clock;

the second slot is an indicator for recycling.

The recycle feature allows for an additional pass, or cycle, through the

Activities List without advancing time. Thus, many Activities can be made to

occur simultaneously, even though they do not appear consecutively in the

Activities List.

A more detailed description of the timing subroutines is provided in

Section III.

PROGRAM ORGANIZATION

As in all programs, one must have an initialization section, a termination

section, and a "Middle" or "Working" section. In FORSIM, the "Middle" section

is called the Event and Activities List.

This name is given to suggest that the user organize the time dependent or

dynamic elements of his system into a sequence of routines, each dealing with

some particular type of action. Each such routine is called an Activity and the

sequence is called a List. The last Activity on the List should finish by calling

the Main Timing routine (TIME) which will either terminate the run or cause a

new cycle through the Activities List.

As previously mentioned, the time slots may be associated either with

Entities or with Activities. The timing routine does not select and execute the

next Activity; instead, it selects a new time for the Main Clock and causes a

cycle through all the Activities. Thus, it is quite advantageous to have some

sort of dynamic test at the beginning of each routine. If the test is failed, the

Activity is skipped. It is also efficient to have as few time slots as possible.

The model program subsequently described illustrates both these points.

SERVICES

A variety of statistical services are provided. A histogram package is

available which can handle any number of separate histograms. Mean, variance,

and standard deviation are calculated for each histogram. Each frequency slot

contains the actual number of observations, the percentage, cumulative per-

centage, and cumulative remainder. A statistical analysis routine allows the

accumulation and calculation of mean, variance, standard deviation, and maxi-

mum for any number of different data groups. Sampling is available from the

general normal, rectangular, and exponential distributions. In addition, the

user may specify any distribution provided that it can be formed in core as a

cumulative probability array which can be automatically sampled as a discrete
*

or as a continuous curve.

To facilitate reinitialization and rerunning, routines are available which

can clear or zero a set and clear out a histogram, while either retaining or

altering its structure and which can reset time to zero. How many of these

routines or in what combinations they are used is left to the programmer.

OTHER FUNCTIONS

The Input/Output, Arithmetic, Decision Logic, and Normal Processing

functions are provided by FORTRAN IV. In many cases, a very straightforward

and powerful decision logic can be concocted by interleaving FORTRAN and

FORSIM commands. To pick at random from SETA an Entity whose time slot

equals the Main Clock and whose first parameter is greater than 10, we gather

all Entities which satisfy the conditions, into a "work" or temporary Set (SETT),

and then pick an Entity at random. The following coding illustrates this.

CALL ZERO (SETT)

1 = 0

1 CALL FIRST (I, SETA, LG)

IF (LG) GO TO 2

IF ((ITIM(I) . NE.MCLOK) . OR. (PAR(I, 1) . LE.10)) GO TO 1

CALL INTO (I, SETT, LG)

GO TO 1

*
A set of routines provides random integers and random fractions. These
STRAP-coded entities were borrowed from the STAPP System. Another gift
from STAPP is the debug facility or "KEEP" subroutines. Refer to MITRE
TM-67, "The STAPP System," March, 1963.

10

2 CALL ANY (I, SETT, LG)

IF (LG) GO TO 10

Processing continues with the randomly selected Entity, I.

In this example, we clear out temporary Set SETT and use FIRST routine

to cycle through all Entities in SETA. Acceptable Entities are put in SETT but

are not removed from SETA. When SETA is exhausted, we go to 2 and pick an

Entity at random from SETT. If SETT is empty, we exit to 10, since there is

no Entity which satisfies the conditions. Otherwise, we continue processing

with the randomly chosen Entity, I. SETT is a temporary Set in the sense that

it may be zeroed and used by several different routines for temporary needs,

but it still must be properly defined and dimensioned.

11

SECTION III

COMMAND SET

This section is a dictionary of the various command routines. A con-

venient tabulation of the commands may be found in Appendix B. The commands

have been grouped into the following major classifications: 1) Set-Entity

routines, which are the heart of the language and are discussed first; 2) Time

routines; 3) Histogram routines; 4) Statistical routines; and 5) Random Number

and Debug (STRAP/FAP coded) routines. The standard FORTRAN convention

applies to the designation of fixed and floating-point variable names. Sets are

generally denoted by ISA, ISB, or ISET, and Entities are denoted by I.

In discussing Set-Entity routines, a distinction has been made between

routines which perform unconditionally and those which perform only if certain

conditions are satisfied. The former are called Action routines and the latter

are called Dual routines.

SET-ENTITY ROUTINES

Action Routines

COUNT (ISET, N)

GAINS (ISA, ISB)

INIT (ISET)

Count routine causes N to be set equal

to the number of entities in Set ISET.

Gains routine causes all entities in Set

ISB, which are not already members

of Set ISA, to be entered into Set ISA.

INIT routine has the effect of initializing

or emptying ISET. It must be used to

initialize all Sets.

12

LOAD (ISET, IL, IH)

LOSE (ISA, ISB)

ZERO (ISET)

CONVRS (ISA, ISB, IL)

Dual Routines

FROM (I, ISET, LG)

HEAD (I, ISET, LG)

Load routine causes Set ISET to be

emptied and then loads it with all

Entities from IL (low bound) to IH

(upper bound), inclusive.

Lose routine removes from ISB all

Entities which are in both ISA and ISB.

(ISA is unaffected.)

ISET is zeroed or emptied. (N.B. -

Identical with INIT.)

CONVRS routine effectively divides a

class into two mutually exclusive Sets.

All Entities, from the first up to the

ILth, which are not already members

of Set ISB, become members of Set ISA.

Entity I is removed from Set ISET. If

I is not a member of ISET, then LG,

logical variable, is set True. Nor-

mally LG is set False. This convention

holds for all dual routines; if the action

is legal, it is undertaken and LG is

set False; if the action is improper,

LG is set True and the command is

ignored.

Entity I is placed at the head of Set

ISET. In a queue sense, HEAD means

13

INTO (I, ISET, LG)

TAIL (I, ISET, LG)

the first in line. If I is already in

ISET, LG is set true.

Entity I is placed at the end or tail of

Set ISET. In a queue sense, INTO or

TAIL enters I as the last in the Set.

LG is set True if I is already in ISET.

Has the same effect as INTO.

Test Routines

EMPTY (ISET, LG)

EQUALS (ISA, ISB, LG)

IN (I, ISET, LG)

NOTIN (I, ISET, LG)

WITHIN (ISA, ISB, LG)

If Set ISET is empty, then LG is set

True; otherwise LG is set False. This

convention holds for all test routines;

if the test is satisfied, logical variable

LG is set True.

LG is set True if Set ISA equals Set

ISB, i. e., if they both have exactly the

same Entities as members (although

the Entities may be ordered differently

in the two Sets).

LG is set True if Entity I is contained

in Set ISET.

LG is set True if Entity I is not a

member of Set ISET.

LG is set true if Set ISA is contained

within Set ISB. ISA is within ISB only

if all members of ISA are also mem-

bers of ISB.

14

Special Action Routines

SUM (ISA, IP AR, II, 12, IRP) SUM routine forms a sum of a specific

Attribute or Parameter of all the

Entities in Set ISA. IP AR is the

Attribute or Parameter table; it is

dimensioned as an (II, 12) array, where

II equals the number of Entities in the

given Class and 12 equals the number

of Parameters to be associated with

each Entity. Initially, IRP is set as

the Attribute or Parameter desired;

upon return, SUM sets IRP equal to

the requested sum.

Example:

Let ISA contain Entities 1, 2, and 5. Let IPAR be of size (100, 5); i.e.,

there are 100 Entities, 5 Parameters each. We wish to sum Parameter

3 for all members of Set ISA, (ISA might contain all trucks which are on

the road; Parameter 3 might contain the cargo weight carried by each

truck; thus the desired sum would represent the amount of cargo in transit

at any given time).

1. ISUM = 3

2. CALL ISUM(ISA, IPAR, 100, 5, ISUM)

The above code results in ISUM containing the desired sum; i. e. , ISUM =

IPAR (1, 3) + IPAR (2, 3) + IPAR (5, 3).

RANK (ISA, IPAR, II, 12, IA) RANK routine reorders the Entities in

Set ISA, according to Parameter IA

15

in the associated Parameter table,

IP AR (II, 12). As in SUM, II equals

the number of Entities, and 12 equals

the number of Parameters.

Example:

Assume ISA contains the following Entity ordering (1, 2, 3) and the

associated Parameter values were (5, 10, 2). Let the following queue

terminology hold: TAIL (a ... z) HEAD; i. e., Entity a is last, Entity

z is first. RANK will rearrange ISA into (3, 1, 2). Thus the Entity with

the largest Parameter value will become first in the Set, etc.

Special Dual Routines

The special dual routines are used to pick an Entity from a Set. In a queue

sense, we may choose the FIRST, LAST, or, if we want a random choice, ANY.

These three routines allow one to consider a set as a FIFO, LIFO, or Random

queue. The routines are Dual because, if the set is empty or exhausted, a

logical variable is set True.

It is frequently desirable to find the first Entity in a Set which satisfies

some set of conditions. This can be done using FIRST (or LAST, if the reverse

ordering is desired), by repeatedly cycling through FIRST and by applying the

set of conditions until either a satisfactory Entity is found or else the set is

exhausted. This is illustrated by the example following the LAST routine

described below.

ANY (I, ISET, LG) LG is set True only if ISET is empty.

If ISET is not empty, I is set randomly

to some Entity in ISET.

16

FIRST (I, ISET, LG) LG is set True, if ISET is empty or if

a cyclic search has exhausted the Set.

If I is set to zero, then the I will be

set to the first Entity in ISET. If I is

set to some other value upon entrance,

the subroutine will search for an Entity

equal to I, and then set I to the next

Entity in line. Thus, repeated

entrances to FIRST (if one starts by

setting 1 = 0, and then does not alter

the returned values of I) will result in

an orderly search through the Set,

beginning with the first and ending with

the last. Termination of such a search

is indicated by a True setting of logical

variable LG. Care should be taken to

guarantee that legitimate nonzero

values of I are used during intermediate

stages of the search. If an I is used

which is not a member of the Set, then

the search will terminate as if the Set

were exhausted.

LAST (I, ISET, LG) LG is set True if ISET is empty or if

a cyclic search has exhausted ISET.

If I is set to zero upon entering LAST,

then I will be set to the Last Entity in

the Set. If I is set nonzero upon

17

entering LAST, then I will be set to the

next from "last" Entity after Entity I.

This uses the same cyclic search

technique as FIRST.

Example:

Let SETA be: LAST (5, 7, 3, 9) FIRST. Consider the following code:

I = 0

1 CALL FIRST (I, SETA, LG)

IF (LG) GO TO 10

(Set of conditions, expressions, etc. , in I; if I satisfies them, go to 15, or
fall through and:)

GO TO 1

15 Routine for the First acceptable I.

10 Routine if no acceptable I is found

The above code will search and produce the first acceptable Entity or will

indicate that there is none. On the first entrance, I is set to 0, becomes

9; on the second entrance, (if we loop to 1), I enters as 9, and exists as 3.

This continues until an acceptable I is found or until we enter with I set to

5. If I is set to 5, upon entrance, LG is set True and the search is

terminated.

Entity Moving

It is often useful to move an Entity from one Set to another. This can be

done by using FROM and INTO routines described above. However, special

routines are available to transfer the last or first Entity of Set A into the last

or first position of Set B. This facilitates the transference of Entities between

18

LIFO and FIFO sets in any combination. These routines may be used conveniently

when the user is interested not in the specific Entity which is moved but only in

its position in the Sets.

The MOVE routines are dual purpose in that a check is made to assure

that the move can be made. If it cannot, no transfer is made and logical variable

LG is set True. If the transfer is legal, LG is set False and the appropriate

Entity is deleted from Set ISA and inserted in Set ISB.

MOVEFF (ISA, ISB, LG)

MOVEFL (ISA, ISB, LG)

MOVELF (ISA, ISB, LG)

MOVELL (ISA, ISB, LG)

The first Entity in ISA becomes first

in ISB. If ISA is empty, no transfer is

made and LG is set True.

The first Entity in ISA becomes the

last in ISB. If ISA is empty, no

transfer is made and LG is set True.

The last Entity in ISA becomes the

first in ISB. If ISA is empty, no

transfer is made and LG is set True.

The last Entity in ISA becomes the last

Entity in ISB. If ISA is empty, no

transfer is made and LG is set True.

TIMING ROUTINES

Time slots may be associated with Entities or Sets, or they may simply

be variables appearing anywhere in the simulation. How they are assigned is

left to the user. However, all time slots must be consecutively ordered some-

where in memory. Furthermore, the first two slots in Common must be

19

reserved as integer-valued fields. The first Common slot is the Main Clock and

can be referenced by the programmer. The second slot is used as a recycle

indicator.

RECYC RE CYC routine has no arguments.

When executed, it causes the main

timing routine to perform another cycle

through the program without advancing

time. Suppose there are two activities

or routines, A and B, in the simulation

and suppose that the program performs

A and then B. It may be that some

action in A is blocked by a condition in

B, and that the blocking condition is

removed when B is executed. The use

of RECYC permits a second pass

through both A and B, thus allowing

the simultaneous occurrence of many

actions before time is advanced. The

following should be carefully noted:

1. Regardless of how often a RECYC

is executed during a single pass,

only one additional pass or cycle

is made.

2. If, on a recycle pass, RECYC is

again executed, a further pass will

be made without advancing time.

20

SETIM (ITAB, ID)

TIME (ITAB, ID, IRUN, LG)

Hence, care must be taken in the

logical positioning of the RECYC

statement to prevent creation of a

perpetual loop.

3. Before a recycle pass is begun,

the current pass is completed.

SETIM routine must be used for

initialization and reinitialization. It

sets all time slots and the Main

Clock to zero, and turns off the Re-

cycle indicator. ITAB represents the

first slot of the time-slots array.

ID is the number of time slots. All

time slots must be grouped consec-

utively as a one-dimensional table,

ITAB, of dimension ID.

TIME is the main timing routine; it

should be called at the end of a

program cycle. ITAB and ID, as

above, represent the time-slots

array and its size. IRUN is the

maximum running time of the pro-

gram - in whatever basic units are

being used. Logical variable LG is

set True only at the end of the run.

TIME determines whether a recycle

is to occur or time is to be ad-

vanced. In the latter case, Main Clock

21

is advanced to the next most imminent

action time as revealed by the time-

slots array. The time slots are not

altered. If time has been advanced to

a value less than or equal to IRUN, a

new cycle is begun. If time has been

advanced beyond IRUN, the run is ended.

If time is less than IRUN and cannot be

advanced because no future events are

scheduled in the time slots array, a

diagnostic statement is printed and the

run is ended. A cycle is begun by

returning with LG set False; a run

termination (normal or error) is

signalled by returning with LG set True.

Thus the following code pattern should

appear at the end of the simulation

activities:

CALL TIME (ITAB, ID, IRUN, LG)

IF (LG) GO TO End-Of-Run Routine

GO TO First Activity to start a new cycle.

It should be stressed that the time

slots are set by the programmer and

are not altered by TIME; only the Main

Clock is advanced.

22

HISTOGRAM ROUTINES

Each histogram must be defined in a Dimension statement. Dimension

must be set to 5 plus the number of frequency slots desired. Next, one may

call the HSTIN routine to initialize, the HSTADD routine to insert a value, and

the HSTOUT routine to provide output. If desired, CLEAR routine can be

called to reinitialize the histogram.

HSTIN (IHA, IN, IL, IQ) IHA refers to an appropriately

dimensioned array; IN refers to the

number of slots desired; IL refers to

the low value (i. e. , all values < IL will

be tabulated in the first frequency slot);

IQ refers to slot quantization (i. e. ,

the second slot will tabulate values

> IL and < IL + IQ, etc.; the last slot

will tabulate values > IL + (IN-2) IQ).

Note that all arguments are fixed-point

integer valued. HSTIN is used to

initialize and set up the structure of a

histogram and must be executed before

calling HSTADD for a specific histo-

gram. It will be recalled that a

histogram array must be dimensioned

five slots greater than the number of

frequency slots desired. The first

three slots are used to store IN, IL,

and IQ. Slots 4 and 5 are used by
2

HSTADD to accumulate 2N and 2N

23

HSTADD (IHA, IVL)

HSTOUT (IHA, TTL)

CLEAR (IHA)

where N represents the values tabulated.

This allows the mean and the standard

deviation to be calculated.

IHA is the variable name assigned to a

histogram; IVL is the value (fixed

point) to be tabulated. HSTADD enters
2

IVL and IVL into running summations

to form the mean variance and the

standard deviations. It then determines

the appropriate frequency slot for IVL

and increments it by one.

HSTOUT routine causes histogram IHA

to be printed out under the heading

given in TTL. TTL may be six alpha-

numeric characters. Histogram

printouts tell the number of entries,

the mean, the standard deviation, the

variance, and, for each frequency

slot, the number of observations, the

relative frequency, the cumulative

probability, and the cumulative

remainder.

CLEAR routine zeros all frequency
2

slots and running totals for N and N

but does not affect the values of IN,

IL, and IQ. Thus a histogram can be

24

cleared for future use involving the

same frequency slot structure. If a

new structure is desired, HSTIN must

be used in addition to CLEAR.

STATISTICAL ROUTINES

Distributions

EXPN (IVL, FMN)

NORMAL (IVL, FMN, SD)

EXPN routine returns with IVL (fixed

point) set to a randomly chosen value

from an Exponential distribution of

mean value FMN (floating point). Since

EXPN is expected to be used for inter-

arrival times, IVL will never be set

less than 1.

NORMAL routine returns with IVL

(fixed point) set to a randomly chosen

value from a Normal distribution of

mean value FMN and standard deviation

SD (both floating point).

RECT routine returns with IVL set to

a randomly chosen integer in the range

MN < IVL <MX. All arguments are

integers.

In addition to the above, continuous or discrete sampling may be had from

any array read or formed in core. The array must represent a cumulative

probability distribution and must be dimensioned as (2, N), where N is the

RECT (IVL, MN, MX)

25

number of values given. Data cards containing the distribution can be read in

through standard matrix array format. Thus the data cards should contain the

following ordering:

Probability 1, Value 1, Probability 2, Value 2 Probability N, Value N.

In core, ARRAY (1, J) = Probability J; and ARRAY (2, J) = Value J.

FORTRAN permits arrays to be easily read, consequently, no special

provision has been made for input. The arrays should be given floating-point

variable names and properly dimensioned. Probability 1 must always equal

0.0; Probability N, where there are N points in the curve, must always equal 1.0.

CDST (IVL, TAB, 2, N) CDST routine provides a fixed-point

value, IVL, chosen randomly from the

array, TAB, of dimension (2, N).

Sampling is continuous in the sense that

linear interpolation is performed

between adjacent points on the curve.

DDST routine is similar to CDST in

arrangement of arguments. It performs

discrete sampling. A random number,

X, is chosen in the range 0. 0 < X <

1.0. If Probability i < X < Probability

1+1, then Value i + 1 is chosen, con-

verted to fixed point, and returned as

IVL.

Fixed-point values are returned by all of the previous statistical routines.

If floating-point values should be needed, the subroutine in question can be

reassembled with an INTEGER IVL card inserted.

DDST (IVL, TAB, 2, N)

26

Data Analysis

Data is frequently accumulated for which Mean, Variance, Maximum, and

Standard Deviation data are desired. The following two routines provide an easy

and rather general method for obtaining this data.

STATS (SARAY, XP, IDX) STATS routine accumulates 2XP,

2XP2, 2N, and M, where XP is

floating-point data, 2N is the number

of XPs entered, and M is the maximum

XP encountered. To accomplish this,

STATS requires the following: SARAY,

a floating-point array of dimension 4,

which must be defined by the user; XP,

a floating-point variable or linear

variable array containing the accumu-

lated data; and IDX, the dimension of

XP, i. e. , the number of datums stored

in XP. If XP is a single variable,

IDX =1. If XP is an array, all values

of XP(I), 1 = 1, IDX will be tabulated.

Thus one may dimension XP equal to

100, fill only the first 25 slots, and

call STATS with IDX = 25; or one may

fill slots 76 to 100, and call STATS

with IDX = 25 and XP set as XP(76).

The table, SARAY, supplied by the

user, is utilized to store running

summations of the number of data,

27

STOUT (SARAY, TTL)

their values and their values squared,

and the maximum value encountered.

STOUT routine prints the number of

entries accumulated, the mean value,

the variance, the standard deviation,

and the maximum value, using the data

stored in SARAY. TTL may be six

alphanumeric characters and is used as

a heading for the statistical printout.

SARAY values are not affected by

STOUT. One can print intermediate

results and continue the accumulation.

If SARAY is to be used for a new accu-

mulation, the four slots of SARAY

must be zeroed—a two statement DO

loop will suffice.

STRAP/FAP-CODED ROUTINES

The debug printing facility and the random number generators are taken

intact from the STAPP system. Except as noted they are available in both

STRAP and FAP.

Fagan, G. A., "The STAPP System," MITRE TM-67, March 1963.

28

KEEP - Debug Printing Routine

Purpose

The KEEP routine prints, under certain conditions, an identification

code of eight or less hollerith characters, followed by either a number of speci-

fied single words or a block of specified size, starting at a named origin.

Numerical values are printed seven or less words per line, seventeen print

wheels per word, with seven decimal places and in fixed-point format.

Calling Sequence

(a) CALL KEEP (6HXXXXXX, KEYWD, N, ITEM1, ITEM2, ITEM3,—)

Provided that bit number N (12 < N < 49) of location KEYWD is

1, the line

XXXXXXXX ABC

will be printed, where A is the value of ITEM1, etc.

(b) CALL KEEP (4HYYYY, KEYWD2, - M, ITEM, K)

Provided that bit M of KEYWD2 is 1, the identification YYYY

will be printed, followed by the K words, ITEM through ITEM

(K). (The negative sign attached to M in the calling sequence

denotes block print.) In both cases, seven numerical values per

line may be printed, and multiple lines are generated if required.

*
For 7090 use, the KEY word is an octal word with bit 0 for the sign bit, etc.
The appropriate bit range is (0 < N < 35). In type "b" calling sequences,
where the negative sign denotes block printing, the bit number must be
numeric rather than symbolic. Identification on the 7090 is limited to six or
fewer hollerith characters.

29

(c) CALL KEEP1 (A, B, C)

This calling sequence superimposes an additional control over

that given by the bit and key word which are specified in every

calling sequence. KEEP calls encountered after the execution of

the KEEP1 call will print only if their appropriate control bit is

1 and if B <A <C.

This is convenient for suppressing debug printing during certain

portions of a program. Usually, A is the "current time" and B

and C are preset limits; however, other values may be used. A,

B, and C may be symbolic or numeric, fixed or floating point.

NOTES
*

1. The identification must consist of eight or less hollerith characters.

2. The KEY word is a FORTRAN integer with bit number 60 for the

sign bit, etc.

3. The bit number is a fixed-point integer (12 through 49). In type

"a" calling sequences, it may be numeric or symbolic.

4. The calling sequences may call for any number of words to be

printed; any number greater than seven will be printed on succes-

sive lines, seven words per line.

5. The equivalent FORTRAN format is:

(1H0,A8, 1X,7F17.7/(10X, 7F17.7))

*
For 7090 use, the KEY word is an octal word with bit 0 for the sign bit, etc.
The appropriate bit range is (0 <N < 35). In type "b" calling sequences,
where the negative sign denotes block printing, the bit number must be
numeric rather than symbolic. Identification on the 7090 is limited to six or
fewer hollerith characters.

30

6. CALL KEEP (6HXXXXXX, Key, N) is permissible, and will print

only the identification.

7. The program enters the FORTRAN routine (IOCS) to execute

printing.

Additional KEEP Calls for 7030 Only

The following four KEEP types are only available for the 7030 and can

be used in either formats (a) or (b) under Calling Sequence above (i. e. , individual

or block printing).

(a) CALL KEEPA - This causes the chosen words to be printed out

in alphabetical format. No blanks or spacing are inserted between

successive words on a line. Fifteen 7030 words per line are

printed.

(b) CALL KEEPE - The selected values are printed in normalized

floating-point format, e.g. , 0.5076E22. Six values per line are

printed.

(c) CALL KEEPI - The selected values are printed as integer

numbers, seven words per line.

(d) CALL KEEPO - The selected values are printed as octal

numbers, five words per line. This format provides a convenient

method for printing logical variables.

KRED

A set of Random-Number Generators (FRED, FNOD, STRN, PURN).

KRED is a multiple-entry subroutine which generates a sequence of pseudo-

random numbers. The three entries, KRED, FRED, and FNOD, are called as

FORTRAN functions and generate random numbers. The two additional entries,

STRN and PURN, are used for initialization and termination, respectively, and

are called subroutines.

31

Examples:

(a) CALL STRN (IRN, KEYW, BIT) - This is an initializing entry and

must be called before KRED, FRED, and FNOD are used in a machine

run. The initial random number, which must be previously stored in

the location IRN, is moved to KRED' s internal storage. The initial

random number must be an octal word ending in 1 or 5 (i. e., integers

of the form 4K + 1). The locations of the Key word and the control bit

which govern the debug printing for KRED, etc., are then stored in

appropriate locations.
*

(b) I = KRED (ZZ) - This FORTRAN statement causes a random integer

to be generated and stored in location I. Provided that the appropriate

bit, specified in the STRN call, is 1, the subroutine will print the

identification RANINT at location ZZ (up to eight characters), followed

by the random integer.

(c) A = FRED (ZZ) - A random floating-point fraction (in the range of

0 to 1) is generated and stored in location A. The identification

XXXXXX at location ZZ and the random fraction may be printed by

KEEP.

(d) VAL = MEAN + FNOD (ZZ) * STDEV - FNOD generates a normal

deviate with a mean of zero and standard deviation of 1. The above

statement, therefore, causes a single value from a distribution with

a mean of MEAN and a standard deviation of STDEV to be stored in

location VAL. Printing of the identification and the normal deviate

are controlled by KEEP.

When using KRED, FRED, or FNOD, some argument must appear or the
FORTRAN compiler will believe it is dealing with a variable and not a function.
Any dummy argument will suffice, and setting KEYW to zero will inhibit
printing. One could write I = KRED (ZZ) where ZZ is defined in a DATA
statement as 6HRANINT.

32

(e) CALL PURN (INO) - The last random number generated in the

sequence by KRED, FRED, or FNOD, is moved from internal storage

to the location INO. It is convenient to use this to obtain the values

of "starting random number" at the beginning of each simulation run,

so that an individual run can be duplicated in case of difficulty or error.

33

SECTION IV

SOME TECHNIQUES

GORDON TYPE FACILITIES AND INTERRUPTS

While FORSIM IV is not quite as simple to use as the Gordon Simulator,

it is much more flexible. Hence, facsimiles to Gordon features can be created.

As exhibited in the model program (Section VI), a simple server, or

facility, can be constructed as a Set limited to only one Entity at a time. A Set

which can contain only two Entities can be treated as a facility with interrupt

provision. A large variety of interrupts can be constructed, e.g., interrupts to

any depth, dependent on the relative priority of the Entities; this would involve

a Ranked Set and Entities whose priorities are stored as Attributes. To clarify

this technique, a method of achieving a Gordon-type interrupt is described below.

Consider a facility Set, IFSET, limited to two entities. Associated with

IFSET are an Interrupt Indicator, IND, and two time slots, IT1 and IT2.

(a) A non-Interrupt Entity may enter IFSET only if the Set is empty. If

it enters, IT1 is set to PTM + MCLOK = Departure time, where PTM

is the passage time through the facility.

(b) An Interrupt Entity may enter IFSET only if another Interrupt Entity

is not currently using IFSET. If IND = 1, the facility is interrupted

and cannot be disturbed. If IND = 0 and/or the Set is empty, the

Entity enters, sets IT1 to departure time and sets IND to 1 to prevent

an interrupt. If IND = 0 and the Set is not empty, an interrupt is

effected. IND is set to 1; the Interrupt Entity is moved into the first

slot of IFSET, thus automatically pushing the current Entity to a lower

slot; PTM is calculated, IT2 is set to PTM + IT1, and IT1 is set to

PTM + MCLOK.

34

(c) Exit from the facility is accomplished at time MC LOK = IT1. The

first Entity in IFSET is removed and IND is set to 0. If IFSET is

empty, no further action is required. If IFSET is not empty, then set

IT1 equal to IT2. Thus the interrupted Entity is returned to a first

position in IFSET, and its Departure time has been recalculated to

account for the interrupt. Although two time slots are used, only IT1

can cause an action, i.e. , a Departure. Hence only IT1 need appear

in the time table.

The following example demonstrates this type of Interrupt facility. Con-

sider a facility, ISV, which normally processes data from queue IQB. Assume

a flow of priority data which can interrupt normal processing. This flow enters

queue IQA but is delayed there only if denied immediate access on ISV. Passage

through ISV is always 40 TIME units.

C ISV OUTPUT ROUTINE

50 IF (ITIME(5) . NE . MCLOK)GO TO 60

MOVEFL (ISV, INXT, LG)

IND = 0

CALL EMPTY (ISV, LG)

IF (LG) GO TO 60

ITIME(5) = ITM

C ISV INPUT ROUTINE

60 CALL EMPTY (ISV, LG)

IF (.NOT.LG) GO TO 70

MOVEFF (IQB, ISV, LG)

IF (LG) GO TO 70

ITIME(5) = 40 + MC LOK

35

PRIORITY ROUTINE

70 (CODING)

CALL INTO (I, IQA, LG)

IF (IND. EQ. 1) GO TO 80

MOVEFF (IQA, IQB, LG)

IND - 1

ITM = ITIME(5) + 40

ITIME(5) = 40 + MC LOK

NEXT ROUTINE

80

DETERMINING PASSAGE TIMES THROUGH A SET

Maximum and average passage times through a Set can be obtained with

the STATS and STOUT routines. To accomplish this, set a Parameter or

Attribute equal to Main Clock time as an Entity enters the Set. When an Entity-

is removed from the Set, form XTM = difference between the parameter time

and the present Main Clock time (NOTE: XTM should be floating point, although

Main Clock is fixed point). If an appropriately named SARAY of dimension 4 has

been set up initially, one can then call STATS (SARAY, XTM, 1).

When a printing is desired, say at the end of the run, call STOUT. In

addition to maximum and average passage times, one also obtains the number of

Entities which have passed through the Set, the variance, and the standard

deviation. Passage time calculations are performed only on Entities which have

passed through the Set; no account is made of those still in the Set at printout

time. Of course, these can be included simply by forming XTM and calling

STATS for all Entities still in the Set just prior to calling STOUT. (The model

program contains an example of a Passage Time calculation.)

36

CLASSES OF SETS

Although we cannot formally treat Classes of Sets, we can effectively treat

them by utilizing a simple FORTRAN technique, and, using Trucks and Garages

as Entities, proceed as follows: A Garage is either full or empty. There are

two Sets for Garages (FULL, OPEN), and all Garages are in one or the other

Set. A Truck is either on the road on in one of the Garages. Assuming 10

Garages, there are 11 Sets for Trucks (ROAD, GAR1, GAR2 ... GAR10).

Assume there are 30 Trucks, each of which is either on the road or in some

garage. To remove Truck IT from the ROAD and place it in some randomly

chosen Garage that is not full, we code as follows:

CALL ANY (IGAR, OPEN, LG)

CALL FROM (IT, ROAD, LG)

CALL INTO (IT, GARS (1, IGAR), LG)

Thus Truck IT is placed in the randomly chosen Garage IGAR. We can do

this if we make use of a trick in dimensioning the Sets GAR1 ... GAR10. First

we dimension GAR1 (31) ... GAR10 (31); the normal procedure. Now we

dimension GARS (31, 10) and equivalence GARS (1, 1) = GAR1, GARS (1, 2) =

GAR2 ... GARS (1, 10) = GAR10. This simple technique allows us to use GARS

as a "Class" of the Set-Entity Garage. We may refer directly to GARS or

indirectly to GARS (1, 5); in either case the result is the same. The procedure

is quite convenient if one has a large number of Sets and wishes to index into

them.

In initialization, we must initialize all 10 Sets only once, i.e., as GARS

(1,1)... GARS (1, 10) or else as GAR1, GAR2 ... GAR10.

37

SECTION V

SYSTEM OPERATION

MAINTENANCE

From the previous explanation, the FORSIM system is shown to be a set of

subroutines which are treated like commands. The subroutines, which are

described in Section II, are written in FORTRAN and are quite brief. The user

may obtain copies of the binary and the symbolic decks. An existing subroutine

can be modified simply by examining its listing, making a few changes, and

reassembling. A new subroutine can be coded in FORTRAN, assembled, and

placed with the other binary decks. Only the random number generators and the

debug routines are not amenable to modification in this fashion. The maintenance

and expansion of the system can be done easily by the user.

Another advantage of a FORTRAN package over a precompiler language is

the ease of converting it for use in other computer systems. Since the STRAP

coded routines are also available in FAP, FORSIM IV is immediately available
*

for use on any IBM 7030 or 7090 which can compile FORTRAN IV. Since most

simulation-oriented organizations have a random number generator for their

computer, and since most computers have some sort of debug facility (one can

always use lots of FORTRAN print statements), FORSIM IV probably could be

modified and reassembled for use on any computing system capable of compiling

There are a few incompatibilities between FORTRAN IV for the 7030 and for the
7090. In the 7030, DATA statements use parentheses, whereas slashes are
used in the 7090; the statement, PRINT N, obtains the community output tape
on the 7030, and the 7090 equivalent is WRITE (JT, N) where JT is normally 6.
These incompatibilities occur on ten cards in FORSIM IV and have been corrected
to give a 7090 symbolic deck. It has been assumed that community output is on
tape number 6. If this is not the case, it is necessary to redefine the variable
JT at three places (Card numbers 04165, 04855, and 06105). In any event, JT
must refer to a BCD mode output tape.

38

FORTRAN IV. Modification would consist of inserting decks for the appropriate

random number generators and debug facility (if any), modifying the code for the

Statistical Distribution Subroutines, which call for random numbers via FRED

and KRED, and reassembling all subroutines. The time spent in such a con-

version should not be excessive.

Since the benefits of FORTRAN are well established, it seems hardly

necessary to mention that subroutines, functions, chaining, etc. , are all possible

with FORSIM IV. Anything which can be written in FORTRAN can be written

in FORSIM. One must simply be sure to include the FORSIM subroutines when

they are used, otherwise he writes a FORTRAN IV program. The running of

the program is just like the running of a FORTRAN program. FORSIM binary

decks can be inserted with one' s problem deck, or can be placed on a systems

tape. They are treated like any other subroutine deck.

PROGRAM INITIALIZATION CHECKLIST

This section provides a concise summary of proper procedures for starting

a FORSIM program.

(a) Before using any other Set commands, all Sets must be initialized by

either CALL INIT or CALL ZERO.

(b) All histograms must be initialized by calling HSTIN. If a histogram

is being reinitialized, one must first call CLEAR and, if a new

structure is desired, call HSTIN.

(c) SETIM must be called before attempting to use Main Clock. This is

essential since the loader places meaningless information in Common.

(d) All Sets must be dimensioned to 1 + the number of slots desired;

e.g. f if SETA is to hold at most 10 Entities, then dimension SETA to

11 words.

39

(e) All histogram arrays must be dimensioned to 5 + the number of

frequency slots desired; e.g. , if HSTA is to have 30 slots, then

dimension HSTA to 35 words.

(f) All statistical arrays must be dimensioned to length 4 words prior to

calling STATS.

(g) All Parameter or Attribute arrays must be dimensioned as PAR(M,N)

where M = number of Entities in the Class and N = number of Param-

eters to be associated with each Entity.

(h) All time slots must be properly dimensioned and formed as a consecu-

tive block in core, referenced by a single fixed-point variable name.

(i) Common must be reserved for the Main Clock and Recycle Indicator.

(j) At least one logical variable name should be defined for use with Test

and Dual commands. Any deviations to normal FORTRAN conventions

for fixed- and floating-point names should be defined.

(k) Before using the Random Numbers or the Statistical Distribution

commands, the random number stream must be initialized by CALL

STRN (IRN, KEYWD, N) where IRN, the initial random number, is

an integer of the form 4K + 1. Normally KEYWD should be set to

zero to prohibit printing the random numbers.

41

SECTION VI

MODEL PROGRAM

PROGRAM DESCRIPTION

The Model Program exhibits FORSIM applied to a very simple simulation

problem. Figure 1 is a Message Processing system in which two input-message

lines and one output-message line are available. One type of input message is

stored randomly on a regenerative drum of very large capacity. This procedure

is represented by a random queue without a capacity restraint but with a time

limit. These Type 1 messages are created at a poisson rate with exponential

interarrival times. The Type 2 input messages are also poisson but these are

stored in a sliding register bank. There is no time limit on retaining messages

but there is a capacity restriction of 30 messages. This is represented as a

FIFO queue.

Messages are selected from the Random queue or, if it is empty, from the

FIFO queue to be processed singly, and are transmitted out of the system. We

desire a statistical analysis of the number of messages of each type which are

lost per second and of the passage times through the Random queue, as well as

histograms of the age of each type of message sent.

The program is designed for multiple runs. The user specifies how many

runs on the first data card and, using one card per run, specifies the mean of

exponential input interarrival time, the normal mean output rate and the

standard deviation of output rate, histogram structures, and running time (in

basic units of milliseconds). The messages are set up as a Class (i. e., each

Message is an Entity) of 1000 Entities. This implies that the system will never

contain more than 1000 Entities at the same time. There is no limit (other than

machine time budget) on the number of messages which may pass through the

system during a run.

42

^—\ IPOOL

STORE IRQ

TIME LIMIT
OF 6000

LOST

STORE IFQ

MAX OF 30
ENTITIES

LOST

Fig. 1. Model Program

The technique of creating and destroying Entities is demonstrated by the

use of the Set, IPOOL. IPOOL is not a part of the simulated system but a

depository for all Entities not presently in the system. Entities are created, or

inserted in the system by removing them from IPOOL; entities are destroyed,

or removed from the system by inserting them in IPOOL. Thus, IPOOL serves

as a revolving fund of Entities.

Class:

Sets:

Messages of 1000 Entities

IPOOL - General Depository for messages, (dimension = 1000)

IRQ - Random Queue (dimension = 1000)

43

Parameters:

Statistics:
Arrays:

Histograms:

Time
Slots:

IFQ - FIFO Queue (dimension = 1000)

ISRVR - Single Server Facility (dimension = 1)

PAR -1- Time in system per Entity

-2- Type 1 (random) or Type 2 (FIFO) Message.

SRLST - Random Entities lost per second.
SFLST - FIFO Entities lost per second.
SRTM - Passage Time for Random Entities sent.

IHRQ - Time in system for Random Entities sent.
IHFQ - Time in system for FIFO Entities sent.

ITIME (1) - Arrival time for next Random Message.
(2) - Arrival time for next FIFO Message
(3) - Output time for the Message in the Server.
(4) - Time to perform per second statistics.

Times must be associated with each Entity for statistical purposes. While

this could be done by creating time slots for each Entity, the procedure would be

quite inefficient since the Main Timing routine would have to scan a Time Table

of over 1000 slots. Hence, time is made a Parameter (Entity Attribute) and the

Time Table is kept to four slots. It should also be noted that each Activity

begins with some dynamic test. This enables the program to cycle efficiently

through the List, bypassing Activities not due for action.

PROGRAM EXPLANATION

A summary of program flow organization is presented in Table 1. The

program listing is shown in Appendix I.

Definitions and Dimensions

In this section of the program, we define and dimension all Sets, Parameter

arrays, and Statistical and Histogram Arrays. Common space is reserved for

44

Table 1

ORGANIZATION OF PROGRAM FLOW

1. Definitions and Dimensions

2. Run Initialization (begins at Statement 1)

3. Activities List

a. Random Queue Input

b. FIFO Queue Input

c. Random Queue Overflow

d. FIFO Queue Overflow

e. Server Input

f. Server Output

£• Statistics Compilation

h. Cycle Termination (exits to 3a or 4)

4. End -of-Run Routine

a. Run Output Printing (exits to 4b or 4c)

b. Rerun Preparation (exits to 2)

c. Job Termination

the Main Clock and the Recycle indicator. Variable names are defined if they

differ from the usual fixed/floating-point convention. All Sets and Time are

initialized. The Random Number Generators are initialized by STRN, and the

number of runs is determined. This section defines all of the initial conditions
*

of the simulation.

Note that STRN is called only once, regardless of how many streams of random
numbers are generated, and that KEYWD is set off to inhibit printout of random
numbers. Also all Sets are dimensioned to 1 plus the number of Entities, while
the Parameter Array has exactly the number of Entities as its first dimension.

45

Run Initialization (Statement 1 of the Program Listing)

This section reads all data for a run, sets up the histogram structures,

and loads IPOOL with all Entities. Time Slot 4 is set to accumulate statistics

at the end of the first second (i. e., at 1000 milliseconds). NRAN is used to

count the number of runs performed. This section is executed only once per run.

Begin Activities List

Random Queue Input (Statement 10)

ITIME(l), the first time slot, equals MCLOK when a message is due

to be created. If this Activity is executed, an Exponential inter arrival time, IT,

is determined and the time slot is reset. An Entity is moved from IPOOL to

IRQ. Since we must set the Entity parameters, we must know which specific

Entity was moved. The new Entity has been placed in the first slot of IRQ,

hence calling FIRST sets I to the Entity. Since we are confident that there will

always be an Entity in IPOOL, and that we will never double insert an Entity in

IRQ, we ignore the settings of logical variable LG.

FIFO Queue Input (Statement 20)

This section is logically similar to the preceding Activity. Since we

desire a FIFO Queue, we place the new Message, Entity, in the last place of

IFQ. In both Input Activities, a message is generated immediately at time zero.

If an initial lag time were desired, the appropriate time slots could have been

set in the Run Initialization section. An alternative input scheme would employ

a tape whose records contain a time and a type code. If the tapes were ordered

by time, a single Activity would read it and enter a message of the proper type

at the indicated times.

46

Server Output (Statement 60)

If the time slot is not equal to MC LOK, then either there is nothing

in the server or a message is still being processed. In either case, we exit to

Random Queue Overflow (Statement 30)

The Random Queue can overflow only if a message remains in it longer

than six seconds. Time in the queue is calculated for each message in the Set,

IRQ, until LG signals that the Set is exhausted. Control then passes to the next

Activity. Overtime messages are removed and returned to IPOOL. STR counts

the number of messages lost. Since we desire a per/second statistical break-

down, STR is accumulated here and analyzed in a later Activity.

FIFO Queue Overflow (Statement 40)

If more than 30 messages are in IFQ, then at the time overflow occurs,

the 31st message must have just been inserted. The oldest (i. e., the first

insertion) is removed and returned to IPOOL. STF count is augmented for the

per/second breakdown.

Server Input (Statement 50)

If the server (Set, ISRVR) is not empty, we pass to the next Activity.

If it is empty, we first attempt to fill it by a randomly chosen message from

IRQ. If IRQ is empty (i. e. , LG is Set True), we attempt to draw from IFQ. If

both queues are empty we pass on. If we supply from IFQ, we move the first

message in IFQ (since it is FIFO queue) to ISRVR and calculate its processing

time as a normal deviate. The third time slot is set to signal the end of

processing on the server. If we supply from IRQ, IMSG is set to a randomly

chosen message. We remove it, place it in the server, and calculate its

processing time. We also determine its passage time, PTM, or the time it

spent in IRQ. This value is then entered for statistical analysis (STATS).

»

47

the next Activity. We also exit if the server is empty. This double check is

necessitated by the recycle feature. If there is a message due to be sent out,

we remove it (only one message can be in ISRVR, hence calling ANY routine

retrieves it) and return it to IPOOL. We then call RECYC. At the end of this

cycle, a recycle will be made. If there were data in either queue, it would not

have been able to enter the server, since it was full. The second cycle will

catch any such message before advancing time. However, if both queues are

empty and time is unchanged, we would pass the first check of the Server Output

Activity and then try to empty the server a second time. RECYC would be

called again, another cycle made, and a perpetual loop would result. Thus we

employ a double check for entrance to this Activity. When this Activity is

executed, we collect time-in-sy stem data for the appropriate histograms, and

then exit.

Statistics Compilation (Statement 70)

The fourth time slot is used to determine one-second intervals. At

the end of each second, we enter STATS for the per-second statistical analysis

of lost data. INSZ is another double check to prevent multiple entries on

recycles. The lost data counters are reset to zero to begin accumulation for

the next second.

Cycle Termination (Statement 80)

This is the last Activity of the Activities List. It must be entered

every cycle and recycle. TIME will advance Main Clock (MCLOK) or not, as

indicated by the absence or presence of a Recycle. If the run is over, LG is

set True and we either exit to the End-of-Run Routine or we start another cycle

by looping to the first Activity (by using Statement 10).

48

Run time limit, so it signals End of Run. Of course, the last cycle might have

been at 9,005. A routine to include the marginal lost data must contend with

End-of-Run Routine (Statement 90)

End-of-Run printing is done under a heading telling what run has just been

executed. Histograms and Statistical analysis are printed using appropriate

six-character headings. If all the runs have been executed, we go to statement

99 and terminate the job. Otherwise, we zero the three Sets in the system,

clear out the Statistical and Histogram arrays, and reset time to zero. Control

then passes to the Run Initialization routine.

It should be noted that if the last value of MCLOK (in milliseconds) is not

a multiple of 1000 (i.e., the run does not end exactly on a second), the lost-

messages data accumulated over the last second is lost. A routine could be

written to include this data if desired. This point should be carefully noted. If

time slots are set at 10,001, 9,999 and IRUN is set at 10,000, the data will be

lost. The last cycle is at time 9,999 and the Statistics Compilation Activity is

not entered. The TIME routine cannot advance time within the bounds of the

both contingencies.

APPENDIX I

C FORSIM IV MODEL PROGRAM

C
C
C DEFINITIONS AND DIMENSIONS

DIMENSI ON I POOL(1001)• IRQ(1001) tIFQ(1 001) • ISRVR C 2)
DIMENSION SRTMC4) »SRLSTC4) »SFLSTC4) « IHRQ<35) ♦ IHFQI35)
DIMENSION ITIMEC4)«PARC1000«2)
COMMON MCLOK«MCYC
LOGICAL LG
INTEGER PAR
KEYWD = 0
CALL STRN(5«KEYWD,48)
CALL ZERO(IPOOL)
CALL ZERO«IRQ)
CALL ZEROCIFQ)
CALL ZEROCISRVR)
CALL SETIMCITIME»4)
READ 100« NRUNS

C
C SETUP POOL INITIALLY AND READ RUN PARAMETER.ETC.•

1 READ -101» IRUNfFMNl ,FMN2,FMN3,SD♦ iLl • IQ1 •IL2» IQ2
100 FORMAT<6X«13)
101 FORMAT(6X*I5«4C1X,F6.2)»4(1X»I3))

ITIMEC4) = 1000
CALL HSTIN(IHRQ«30•ILl•1Q1)
CALL HSTIN(IHFO « 30 « IL2* IQ2)
NRAN = NRAN + 1
CALL LOADC IPOOL«1 * 1000)

C
C SIMULATION CYCLE ÖtGlNS
C
C INPUT TO RANDOM QUEUE

10 IFCMCLOK.NE«ITI ME(1))GO TO 20
CALL EXPN(IT.FMN1)
IT I MEt 1) = MCLOK + IT
CALL MOVEFFCIPOOL,IRQ.LG)
CALL KEEP(6HINPRAN,KEYWD»48)
I = 0
CALL FIRST(I♦IRQ*LG>
PARC I ♦ 1)=MCLOK
PARC I »2) = 1

C
C INPUT Tu FIFO QUEUE

20 IFCMCLOK.NE«1TIMLC2))GO TO 30
CALL EXPNCIT«FMN2)
IT1MEC2) = MCLOK + IT
CALL MOVEFLCIPOOL,IFQ,LG)
CALL KEEPC6HINPFIF,KEYWD«48)

1-49

OVERFLOW RANDOM QUEUE
30 IMSG = 0
31 CALL FIRSTCIMSG«IRQ«LG)

1F(LG)G0 TO 40
IF((MCLOK - PAR<IMSG«1>>»LT.öOOO)GO TO 31
STR = STR + 1*0
CALL FROM(IMSG«IRQ«LG)
CALL INTO(IMSG«IPOOLtLG)

C
C OVERFLOW FIFO QUEUE

40 CALL COUNT(IFQ«KT)
1F(KT.LE.30)GO TO 50
CALL MOVEFF(IFQ«IPOOL«LG)
STF = STF + 1*0

C
C SERVER INPUT

50 CALL EMPTYCISRVR«LG)
IF(LG)G0 TO 51
GO TO 60

51 CALL ANY(IMSG«IRO«LG)
IF(LG)GO TO 55

C SUPPLY FROM RQ
CALL KEEP(6HSUPRAN«KEYWÜ«48)
CALL FROM(IMSG• IRQ « LG)
CALL INTOCIMSG«ISRVR«LG)
CALL NORMAL(MTM«FMN3•SD)
ITIME<3) = MTM + MCLOK
PTM = MCLOK - PAR(IMSG«1)
CALL STATS(SRTM«PTM«1)
GO TO 60

55 CALL EMPTYCIFQ«LG)
IF(LG)GO TO 60

C SUPPLY FROM FQ
CALL KEEP(6HSUPF1F«KEYWD«48)
CALL MOVEFF(IFQ♦ISRVR«LG)
CALL NORMAL(MTM«FMN3«SD)
IT1MEC3) = MTM + MCLOK

C
C SERVER OUTPUT

60 CALL KEEP(6H0UTPUT«KEYWD«49« ISRVR(1) « 1RQ(1) • IFQ(1)
1PTM«NTM«MCLOK)

IF(ITIME(3).NE.MCLOK)G0 TO 70
CALL EMPTYCISRVR«LG)
IF(LG)GO TO 70
CALL ANY<IMSG«ISRVR«LG)

1-50

CALL MOVEFF(ISRVR,1P00L.LG)
CALL RECYC
NTM = MCLOK - PAR(IMSGtl)
IF<PAR(IMSG,2).EQ. 2)GO TO 64
CALL HSTADD(IHRQ,NTM)
GO TO 70

64 CALL HSTADD(IHFQ»NTM)
C
C COMPILE STATISTICS PER SECOND

70 IF(ITIMEC4)»NE.MCLOK)G0 TO 80
IF(INSZ.EQ.MCLOK)GO TO 80
INSZ = MCLOK
ITIMEC4) = MCLOK + 1000
CALL STATS(SRLST»STR,1)
CALL STATS(SFLST,STF«1)
STR = 0.0
STF = 0.0

C
C END A CYCLE

80 CALL TI ME(ITI ME « 4, I RUN♦LG)
CALL KEEPC6H TI MET•KEYWD•-48. ITI ME•4)
IF(LG)GO TO 90
GO TO 10

C
C END OF RUN RTN.

90 PRINT 102« NRAN
102 FORMAT(10X/10X/40X*15H0UTPUT FOR RUN tl3)

CALL HSTOUTC1HRQ«6HRMSENT)
CALL HSTOUTCIHFQ•6HFMSENT)
CALL STOUT(SRLST«6HRML0ST)
CALL ST0UT(SFLST«6HFML0ST)
CALL ST0UT(SRTM,6HRQTIME)
IF(NRAN.EQ.NRUNS)GO TO 99

C
C SETUP FOR NEW RUN

CALL ZEROCIRQ)
CALL ZERO(IFQ)
CALL ZERO(ISRVR)
DO 92 I = 1*4
SRTM(I) = 0.0
SRLST(I)= 0.0

92 SFLSTCI)= 0.0
CALL CLEAR(IHRQ)
CALL CLEAR(IHFQ)
CALL SETIMC I TIME«4)
GO TO 1

C
C END OF JOB

99 RETURN
END

1-51

APPENDIX II

SIMULATIONS - LARGE AND SMALL

FORSIM IV is designed for small to medium size simulations. The goal

is clarity and simplicity. After all, a simulation language is a way of looking

at reality, a guide to organizing or directing one' s systems thinking toward the

construction of a model. To ease the analysis of a problem, the language

should provide a conceptual background that is simple yet flexible and powerful.

To ease the coding, there should be several, even redundant, commands to

permit individual expression. Each command should be simple in itself; the

sum total should be a rich fund from which one picks to suit his needs. FORSIM

IV is an exemplification of this philosophy.

While FORSIM is most convenient in obtaining quick results for moderate

problems, it can be expanded to handle quite large problems. Large simulations

are not always a matter of bit-packing. They usually entail considerable logical

complexity, possibly requiring that several programmers work on various

sections of the problem. In such cases FORSIM can be advantageously combined

with FAST. FAST is a precompiler to FORTRAN and allows one to define all

bit-packing and table dimensioning once in a central dictionary. Individual

programs are precompiled against the dictionary to achieve common linkages.

Structurally, changes to a system can often be effected with the dictionary

rather than the programs, thus shifting much routine maintenance from the

programmers to a technical assistant.

*
Refer to MITRE SR-24, "FAST, FORTRAN Automatic Symbol Translator,"
January, 1962.

11-53

This report does not contend that FAST/FORSIM is a panacea for large

simulations. It is not; nor is anything else. It is a feasible approach for some

problems. FORSIM is very close to FORTRAN and is based upon simple set-

theoretic concepts. It provides a conceptually simple and flexible base. From

this base, rather complicated programming systems can be constructed while

retaining much of the conceptual simplicity.

11-54

APPENDIX HI

SUMMARY OF COMMAND ROUTINES

Page

I Set-Entity 11

A Action 11

CONVRS, COUNT, GAINS, INIT, LOAD, LOSE, ZERO

B Dual 12

FROM, HEAD, INTO, TAIL

C Test 13

EMPTY, EQUALS, IN, NOTIN, WITHIN

D Special Action 14

SUM, RANK

E Special Dual 15

ANY, FIRST, LAST

F Entity Moving 17

MOVEFF, MOVEFL, MOVELF, MOVELL

II Time 18

RECYC, SETIM, TIME

in Histogram 22

CLEAR, HSTIN, HSTADD, HSTOUT

IV Statistical 24

EXPN, NORMAL, RECT; CDST, DDST; STATS, STOUT

Random Nos. & Debug (STRAP/FAP) 27

STRN, PURN, KRED, FRED, FNOD; KEEP, KEEP1, (KEEPA, KEEPE, KEEPI,
KEEPO) ^~~^~*^

functions _
III-55

